
Autonomous Tools and Techniques for Reducing
Operational and Maintenance Costs in Space planes

Mark L. James
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 9 1 109

Mark.James@,id.nasa.eov
(818) 354-8488

Wafa S. Aldiwan
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 9 1 109

Wafa.S.Aldiwan@,jnl.nasa.gov
(818) 354-4322

Abstract-Our objective is to provide a collection of
automated tools and techniques for reducing operational and
maintenance costs in space planes. To demonstrate our
capability, we used the AFE of JPL which will be flown on
the X-33 as the testbed to examine our techniques. This
paper discusses the tools that were used to develop that
software. Another paper is in preparation to discuss the
artificial intelligence being flown on the AFE.

One of the technology demonstrations on the AFE was to
show how artificial intelligence could be used for reducing
operational and maintenance costs. For this we used two
JPL developed tools: Tspec and SHINE. Tspec was used
for the automated testing and verification of portions of the
AFE’s software. SHINE was used as a high-speed inference
engine for monitoring, analysis and diagnosis of portions of
the AFE hardware. Faults are detected and diagnosed in
flight with their resolutions logged by the X-33’s.

This paper provides an overview of SHINE. A description
of Tspec can be found from the references.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10
11

TABLE OF CONTENTS

AESTRACT
BACKGROUND
OBJECTIVE
AVIONICS FLIGHT EXPERIMENT AS A TESTBED
DISCUSSION OF TSPEC
DISCUSSION OF SHINE
THEORY OF OPERATION OF SHINE
PREVIOUS SHINE DELIVERIES
CONCLUSIONS

. FIGURES

. ACKNOWLEDGEMENTS
12. REFERENCES
13. BIOGRAPHY

2. BACKGROUND

Researchers in Artificial Intelligence (AI) of knowledge-
based systems applications have faced a severe lack of
sophisticated software tools running on flight hardware to
assist them in developing AI approaches aimed at reducing
operational and maintenance costs in space planes.

Much of the available commercial and “home-grown’’
software suffers from one or more severe limitations. The
effect has been either to hamper the artificial intelligence
programming techniques that could be used effectively in an
application or to cause AI programmers to redevelop their
own software tools to be used on flight hardware [2]. These
limitations have historically included such problems as
documentation, poor access to facilities at different levels,
lack of modularity, poor run-time efficiency, inadequate
debugging facilities and access to source code and lack of
tools to support the most advanced reasoning techniques.

3. OBJECTIVE

Our objective is to provide a collection of automated tools
and techniques for reducing operational and maintenance
costs in space planes. To demonstrate our capability, we
used the Avionics Flight Experiment (AFE) of Jet
Propulsion Laboratory (JPL) which will be flown on the X-
33 as the testbed to examine our techniques.

The X-33 is a joint program between NASA and Lockheed.
They have partnered to produce the X-33 test vehicle to

demonstrate advanced technologies that will dramatically
increase reliability and lower the cost of putting a pound of
payload into space from $10,000 to $1,000. The X-33
program will demonstrate in flight the new technologies
needed for a Reusable Launch Vehicle (RLV).

We used two JPL-developed tools as examples of how AI

mailto:Wafa.S.Aldiwan@,jnl.nasa.gov

can be used for reducing operational and maintenance costs
and we used the AFE as our testbed for testing out our
ideas.

The Test Specification Language (Tspec)[I] was used for the
automated testing and verification of portions of the AFE’s
software and hardware. Spacecraft Health Inference Engine
(SHINE)[7] was used for monitoring, analysis and diagnosis
of portions of the AFE hardware. Both these tools were
used on the AFE during system Integration and Test (I&T)
and while in flight. Faults are detected and diagnosed in
flight with their resolutions logged by the Vehicle Health
Manager (VHM) of the X-33 through the 1773 system bus.

4. AVIONICS FLIGHT EXPERIMENT AS A TESTBED

The AFE of JPL is being flown as part of the X-33 as a
testbed to demonstrate new hardware and software for
reducing the cost of space planes. Because the AFE was
designed and built by JPL, this provided us many
opportunities to influence the hardware design and
capabilities of the end system. This means that the AFE
provided us with a very rich environment for testing out our
ideas.

The hardware of the AFE is composed of a PPC 603ev
processor clocked at 200 MHz, 5 I2KB of level 2 cache, 196
MB of RAM, 220 MB of non-volatile memory, six
redundant 1553 flight buses, one 1773 optical bus, an
avionics package including of a Geo Positioning System
(GPS), accelerometers, gyro data, A to D converters and
timers.

The software was composed of the following major
modules:

1. Boot System Software
The bootstrap component provides three
capabilities: nominal booting, off-nominal booting
and internal visibility.

2. Boot System Software
The bootstrap component provides three
capabilities: nominal booting, off-nominal
booting, and internal visibility.

3. 1553 Device Driver
Interfaces to the six redundant 1553 buses to
provide an unidirectional data flow of all X-33
1553 bus traffic to the AFE.

4. 1553 Bus Data Parser
A programmable facility which can be dynamically
configured to extract specific measurements from
1553 bus traffic, convert them to the specified
units and send them as individual measurements to
the Data Routing Task for distribution.

5. 1553 Resource Manager
Interfaces to the 1553 device driver to provide a
unidirectional data flow of 1553 bus data from the

1553 hardware to the resource manager.

6. Data Routing Task
Responsible for receiving data from the 1553 and
the sensor assembly and sending it to the various
AFE tasks via the IPC facility. It also provides an
interface to supply the Avionics Health Manager
with selected real-time 1553 data using a
unidirectional pipe from the Data Router to the
Avionics Health Manager.

7. 1773 Device Driver
Interfaces with the ASCENT AS-1773 Bus
Controller chip. The AFE acts as the bus
controller on the 1773 bus, and the X-33 VHM
subsystem is the only Remote Terminal on that
bus. The DD1773 encapsulates the hardware
details of the ASCENT chip, and provides a
simple ReadiWrite interface to the VTM task.

8. Sensor Assembly Driver
The hardware driver interface to the AFE’s Sensor
Assembly Module. This is the software interface
to the GPS and accelerometers.

9. Sensor Assembly Resource Manager
Interfaces to the Sensor Assemble Driver to acquire
real-time sensor assembly data, convert the data
into engineering units and send it to the Data
Routing Task.

10. Non-Volatile Memory Manager
A silicon hard disk that is used to contain the AFE
software and store the configuration information for
each flight.

11. VHM Transaction Manager
Provides a bi-directional interface to the 1773
optional bus of the X-33. This bus is used to
record the results from AFE on the X-33 for later
processing by ground operations.

12. Enhanced State Estimator
The AFE has an internal Sensor Assembly Board
containing a micro-gyro (planned), micro-
accelerometers, and GPS devices. The ESE task
receives input data from the Sensor Assembly
Manager task, which handles the sampling of the
AFE sensors and coverts the raw data to
engineering units (for the gyros and
accelerometers).

13. Watchdog Timer
Provides the basic capability of having the AFE
Software automatically reboot itself if the
watchdog task stops working or the CPU halts.

A diagram of the relationship between the avionics health
manager relative to the AFE software can be seen in figure
1.

5. DISCUSSION OF TSPEC

Tspec[l] is a behavior specification language, a compiler,
and a library of support software that together enable users
to specify expected behaviors, compile those into auditor
modules that are included within a C/C++ system under
test, and get notifications when behavioral expectations are
violated. These embedded behavior auditors analyze the
[lengthy] observed behavior in real time to verify if the
application logic is respecting all constraints.

Given appropriate specifications, the Tspec auditor can
detect a variety of misbehaviors. These include:

14. Detecting invalid values (e.g., Transmitter A
voltage should never exceed 40 volts);

15. Liveness violations (e.g., Missing heartbeat
from state estimator);

16. Resource violations (e.g., Task A on CPU
B is consuming too many resources);

17. Missing values (e.g., Missing update from
gyro);

18. Illegal state transitions (e.g., Subsystem A
goes from “Off” to “Off’ without an
intervening “On”);

19. Duration violations (e.& Battery heater that
stays on longer than is expected);

20. Invariant violations (e.g., Taking a sensor
reading when the cover is closed);

21. Out-of-sequence events (e.g., turning on an
exciter before turning on its power
amplifier).

Testing with Tspec is centered on declarative specifications
of acceptable behavior, in the form of invariants, state
machines, episodes, and constraints. Behavior encompasses
values of observed measurements, update frequencies, event
sequences, interval durations, repetition rates, and flight
rules. Compared to methods that check for specific forms
of misbehaviors, this approach is easier because users
specify a relatively small number of correctiexpected
behaviors rather than a huge variety of misbehaviors, and
more robust because it flags behaviors that deviate from the
specifications.

Specifications of expectedacceptable behavior are expressed
in this higher level user-oriented language and compiled
into a lower level language which is combined with the
Tspec library to create the test auditor module in a system
under test.

The Tspec language attempts to satisfy two communities of
users. First, for users who will be encoding behavior
specifications (like flight rules) that come from documents

and conversations, the language should be simple and
intuitive enough that it can be learned in about an hour and
it should allow for incremental accumulation of and
refinement of behavior specs. Second, for projects whose
flight software executes formal plans, the language must be
expressive enough to encode such plans so that plan
execution can be verified automatically.

Tspec is similar in expressive power to linear temporal
logic, but its forms (invariants, state machines, episodes,
and resource constraints) are believed to be more readily
understandable and usable by spacecraft system engineers
than are the temporal logic future operators (Next, Always,
Sometime, Until).

6. DISCUSSION OF SHINE

SHINE is a reusable inference engine for the monitoring,
analysis and diagnosis of real-time and non-real-time
systems. It is intended for those areas where inference
speed, portability and reuse are of critical importance.
When the knowledge base is cross-compiled, its resulting
size is extremely small and it can easily fit on targets with
limited memory.

Knowledge acquisition and implementation from experts is
an inefficient and painful process for most automation
implementation projects. This phase is often so difficult,
that the success of the automation project as a whole is
jeopardized, and then often the resulting system is too slow
or large to fit on the target system. SHINE was designed to
address such problems by providing an efficient, with
respect to speed and size, development and delivery
environment.

SHINE is not intended to be an all-encompassing inference
system. For those applications requiring advanced lnference
strategies and representational capabilities, then another
inference engine would be more appropriate.

SHINE was designed to solve the usual kinds of monitoring
and diagnostic problems found in flight projects, factory
automation or the general area of intelligent sensor
monitoring. In those cases then it provides a very effective
and efficient solution for the representation and execution of
such problems.

When a problem can be defined in terms of its attribute
stimulus representation (discussed later), then SHINE
provides a cost-effective approach to large-scale distributed
software systems because of its data flow representation of
rules. This reduces the complexity of the conflict-resolution
match cycle by the transforming the knowledge base into a
data flow diagram. The data flow diagram is then translated
to the destination target programming language for efficient
representation and execution.

The inference cycle never needs to pause for system-level
activities such as garbage collection because the final
representation preallocates all necessary storage for the

inference process. This provides the knowledge base with a
much more predictable execution profile that is often
necessary in real-time applications.

SHPJE has contributed to reduced operations cost,
improved reliability and safety in eight NASA deep space
missions that include Voyager, Galileo, Magellan, Cassini
and Extreme Ultraviolet Explorer (EUVE). SHINE has been
delivered to the NASA’s X-33 as a component of JPL’s
Avionics Flight Experiment (AFE) and will be flown in
1999.

7. THEORY OF OPERATION OF SHINE

SHINE runs on multiple platforms and it has been ported to
PCs, MACs, SUNS, VAXes and the AFE’s flight
computer. It is fully reusable and portable requiring less
than three hours to port from one machine to another that
supports Common LISP. In addition, it contains cross
compilers for translating a knowledge base to C and C++
without any reliance on the LISP environment. SHINE is
originally based on the STAR*TOOL [8][9] and rewritten to
be more efficient and sensitive to flight processor
requirements and limitations.

Rules are translated into stimulusiresponse objects that are
then woven into a data flow model. The execution speed is
improved from a sophisticated mathematical transformation
based on graph-theoretic data flow analysis. The data flow
representation is then transformed into threaded procedures
for rapid execution.

Figure 2 shows the steps involved in the SHINE compiling
process. SHINE takes a knowledge base composed of
attribute and variable descriptions, forward and backward
chaining rules and function definitions described in a
common representation language and generates code.

One target that is always generated is the development
environment and an optional target of one of the language
target generators, e.g., C, C++, etc.

SHINE includes a high-speed development environment that
allows for the easy definition, editing, testing and delivery
of knowledge-based systems. When speed is of critical
importance, a cross compiler is seamlessly integrated in the
development environment to translate the knowledge base to
C or C++. Cross compilers for ADA and JAVA are
planned for 1999.

The development environment allows you to incrementally
define your attribute and variable descriptions, forward and
backward chaining rules and function definitions and test
your system. This environment is written in LISP and
executes very efficiently.

any reliance or emulation of the original LISP
representation. The resulting code is often small enough
and efficient enough to fit on 8-bit microprocessors.

Representing rules as stimulus/response objects not only
enhances the forward chaining inference process. It doesn’t
enable pattern-directed goal retrieval, i.e., backward
chaining. Backward chaining inference is implemented by a
transformational system that rewrites the backward chaining
rules into their corresponding forward chaining counterparts.

SHINE replaces traditional inefficient pattern-based rules
with collections of stimulus/response attributes containing
constraints of arbitrary complexity.

SHINE contains a collection of compilers which translates
the rules through a series of phases ultimately resulting in
the target code, e.g., machine code, C/C++, ADA (delivery
in 1999) or JAVA (delivery in 1999).

SHPJE replaces relations with objects called attributes.
They are like variables in that they have values and they can
be grouped to form relations. They are unlike variables in
that rules that access their values get scheduled for running
whenever the attribute is assigned a value.

Attributes can have complex constraints associated with
them including all the usual relational, logical, functional
and mathematical operators.

Forward and backward chaining rules are used to represent
knowledge processes where the attributes are used to
represent the information. The activation of a rule is based
upon the attributes in a rule being assigned a value and the
constraints upon those attributes holding true at that instant
in time. Any rules containing those constraint-satisfied
values will be scheduled for execution. This process is
repeated until there are no more rules that can be executed
and the Inference process ends.

A rule may have computational and inference side-effects:

Computational side effects are the typical
computational algorithmic effects, e.g.,
assignments, calling functions that change
something.

Inference side-effects are those which modify
something in the knowledge base which causes a
rule to be scheduled for evaluation, i.e., the
assignment of a value to an attribute.

If execution speed and size are of critical importance, then
the entire knowledge base can be cross-compiled into one of
the optional targets. The result code is very small without

8. PREVIOUS SHINE DELIVERIES 9. CONCLUSIONS

Just as artificial intelligence can play an important role in
the monitoring and diagnosis of space planes, the tools that
are used to develop these systems also play an important
role. This is especially true when issues of reliability, real-
time performance, limited code and execution size, ease of
use and maintainability are all factored in.

The AI techniques and tools that were developed for the
AFE are well suited for the monitoring and diagnosis of
space planes and ground systems. Both SHINE and Tspec
run well in environments where system resources such as
processor cycles and memory are at a premium. Both of
these systems have been demonstrated in stand-alone
advisory systems for human operators as well as
components of embedded systems. Both of the tools
generate C++ code which allows them to run efficiently in
flight systems with real-time operating systems such as
VxWorks.

Some of its successful areas of application include:

1. Spacecraft Health Automatic Reasoning
Pilot (SHARP) for the diagnosis of
telecommunication anomalies during the
Neptune Voyager (VGR) Encounter. Several
hours before the encounter it detected a
failing transponder. This was detected long
before it was possible by human operators
which prevented possible down time during
the most critical phase of the mission.

2. Galileo (GLL) mission for diagnosing
problems in the Power and Pyro Subsystem
(PPS).

3. Magellan (MGN) mission for diagnosis of
telecommunication anomalies in the
TELECOM subsystem.

4. Engineering Analysis Subsystem
Environment (EASE) which is an operations
environment to operate a large number of
spacecraft simultaneously, maintain high
reliability levels and increase productivity
through shared resources and automation.

5. Extreme Ultraviolet Explorer (EUVE)
mission for labor 3 to 1 shift reductions
through the use of artificial intelligence.

6. Being flown on NASA's X-33 as part of
JPL's Avionics Flight Experiment (AFE)
for monitoring and diagnosis of 1553
redundant bus failures and flight phase and
mode identification.

7. Fault Induced Document Offker (FIDO) for
the E W E mission: an automated system
that assists in expert knowledge acquisition,
access and publishing capabilities for safely
managing complex systems under staffing
reductions and "lights out" operations.

8. Being evaluated by Welch-Allyan for
detecting and classifying colon cancer.

9. Johnson and Johnson is evaluating SHINE
for the control of a robotic system that
performs endoscopic surgery.

The benefits afforded by the application of these tools and
techniques are significant. The architecture and autonomous
fault diagnosis techniques pioneered in the SHAW[16][17]
system have demonstrated important benefits for operator
productivity and spacecraft safety and have the potential to
reduce workforce requirements for future space operations.

These techniques are have their limitations. The diagnostic
techniques developed for the SHARP system are most
appropriate for highly complex spacecraft or ground systems
where faults are not immediately diagnosable from surface
behavior. Our tests have shown that some of the most
common spacecraft anomaly situations are easily diagnosed
by human experts and only simple, one-step inference is
required. If this knowledge can be coded directly into a
knowledge base, a simple heuristic associative diagnostic
process may be preferable. It should be emphasized that
building and testing knowledge bases is time-consuming
and is the major bottleneck for application development[2].

NO matter how good your tools are, knowledge acquisition
remains a fundamental bottleneck for development of
applications of these systems and for knowledge-base
systems at large.

10. Being used by mission operations to
diagnose anomalies in the Deep Space
Network (DSN) Antenna Array systems by
providing a solution for optimal DSN
decision-making by integrating analytical
and artificial intelligence methods.

10. FIGURES

AFE FSW

Figure 1: Block Diagram of Avionics Flight Experiment Software Data Flow

Knowledge bases are specified in a high-level programming language composed of common
programming language constructs, e.g., Lf/Then/Else, For/While/Until, function calls.

SHINE rules are sent to the SHINE compiler which links them with the SHINE libraries
B and then compiles them directly into native target code.

The machine code is linked into the target program space. The execution of the rules is
controlled by the SHINE Real-Time Inference Engine.

Figure 2: Block Diagram of SHINE Internal Structure

11. ACKNOWLEDGEMENTS

The work described in this article was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

12. REFERENCES

[l] Lowry, Michael and Dvorak, Daniel. Analytic
Verification of Flight Software, IEEE Autonomous
Space Vehicles, 45-49, SeptembedOctober 1998.

[2] Atkinson, David. Artificial Intelligence for Monitoring
and Diagnosis of Robotic Spacecraft, Chalmers
University of Technology, Sweden, Technical report
237, 1992.

[3] Abbott, Kathy H. Strategies and Representations for
Onboard Aircraft Fault Diagnosis. SIGART
Newsletter. Association for Computing Machinery.
No. 92 April 1985a.

[4] Abbott, Kathy H. Exploration of Expert Systems

Concepts for Onboard Diagnosis of Faults in a
Turbofan Aircraft Engine. Proceedings of the American
Control Conference. Boston, MA. 19-21 June 1985b.

[5] Abbott, Kathy H. Using Dynamic Behavior of
Physical Systems for Real-time Fault Diagnosis: An AI
Approach. IEEE Transactions on Systems, Man, and
Cybernetics: Special Issue on Diagnostic Strategies.
(Draft copy) 1986

[6] Davis, R. et al. Diagnosis Based on Description of
Structure and Function. Proceedings of the National
Conference on Artificial Intelligence. American
Association for Artificial Intelligence. Pittsburgh, PA.
18-20 August 1982

[7] James, Mark L. SHINE 5.7.4 Reference Manual (JPL
Internal document) August 16, 1998.

[8] James, Mark L. and Atkinson, David J. Software fov
Development of Expert Systems, NASA Tech Brief
Vol. 14, No. 6, Item #8 from JPL Invention Report
NPO- 17536/7049 June 1990

[9] James, Mark L. and Atkinson, David J. STAR*TOOL
from JPL Invention Report NPO-I7536/7049 June
1989

Software of the Year Award Nominee for 1997 and 1998,
[lo] James, Mark, and Atkinson, David, “STAR*TOOL - JPL Team Excellence Award for 1990, JPL JET

An Environment and Language for Expert System Productivity Award for 1990, Major NASA Monetary
Implementation”, Jet Propulsion Laboratory Report Award for 1990, NASA Certificate of Recognition for 1990,
NTR C-17536, Jet Propulsion Laboratory, California NASA Achievement Award for 1990, NASA Exceptional
Institute of Technology, Pasadena, California, August Service Medal for 1989, NASA Exceptional Service Plaque
19, 1988. for 1989 and NASA Manned Flight Awareness Nominee for

1988 and 1989.

13. BIOGRAPHY

Wafa Aldiwan is a senior member of the technical staff in
the Autonomy and Control section of the Jet Propulsion
Laboratory in Pasadena, California .She has a Bachelor’s
degree in mathematics and a Master’s degree in computer
science from Texas A&M University at College Station,
Texas. In 1985 she began work at Bell Laboratories.
Initially she contributedin the design and development of a
data network controller for the Datakit Virtual Circuit
Switch, and received the prestigious Arno Penzias Award
for her contributions. Later, she focused on system
engineering of RND UNIX, a mainframe version of the
popular UNIX System V operating system. In 1992 she
transferred to AT&T’s Operations Technology Center to
work on software design and development of WMS, a large
AT&T-internal client-server work management system. In
1996 she joined Jet Propulsion Laboratory in Pasadena,
California and played a significant role (for which she
received a NOVA award) in defining the process for
hardware modeling of the Deep Space 1 spacecraft that was
launched October of 1998. Currently, Wafa leads the
software team for an avionics flight experiment scheduled to
fly on X-33, a scale model prototype of the new reusable
launch vehicle. In her spare time Wafa enjoys skiing,
hiking and camping with her family.

Mark L. James is a Senior Member of the Technical Staff in
the Ultracomputing Technologies Research Group in the
Information and Computing Technologies Research Section
within NASA’s Jet Propulsion Laboratory, Pasadena, CA.
At JPL Mark is Principal Investigator and Task Manager on
a world class program in real-time inferencing and
knowledge-based systems. He manages a number of JPL
and NASA software projects. His primary research focus is
on high-speed inference systems and their application to
planetary and deep spacecraft systems, and, medical
applications. His expertise includes core artificial
intelligence technology, high-speed real-time inferencing
systems, flight system software architectures and software
design and implementation for those systems; image
processing and scene analysis; pattern recognition, planning
and simulation; real-time control systems, programming
languages and compilers; symbolic mathematics, operating
systems, hypermedia systems, AI programming
environments, robotics, visual programming and virtual
reality systems. Additional expertise in medicine, biology
and analog and digital electronics design. Mark has
received a number of NASA awards which include: NASA

